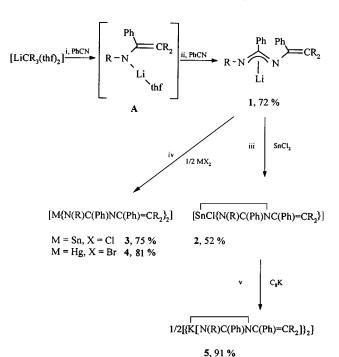
Peter B. Hitchcock, Michael F. Lappert* and Marcus Layh

The Chemistry Laboratory, University of Sussex, Brighton, UK BN1 9QJ


Received 2nd June 1998, Accepted 10th July 1998

The new lithium 1,3-diazaallyl [Li{N(R)C(Ph)NC(Ph)=CR2}] 1 [abbreviated as Li(L-L')] has been prepared from [Li(CR3)(thf)2] and 2 equivalents of benzonitrile (R = SiMe3, thf = C4H8O). Compound 1 was shown to be a suitable precursor for the synthesis of the metal complexes [SnCl(L-L')] 2, [$\frac{1}{2}$ [$\frac{1}{2}$ [$\frac{1}{2}$ A from the appropriate metal(II) chloride, while the reduction of 2 with potassium—graphite led in high yield to [$\frac{1}{2}$ [$\frac{1}{2}$ [$\frac{1}{2}$ A from the appropriate metal(II) chloride, while the reduction of 2 with potassium—graphite led in high yield to [$\frac{1}{2}$ [$\frac{1}{2}$ [$\frac{1}{2}$ [$\frac{1}{2}$ A from the appropriate metal(II) chloride, while the reduction of 2 with potassium—graphite led in high yield to [$\frac{1}{2}$ [$\frac{1}{2}$ [$\frac{1}{2}$ A from the appropriate metal(II) chloride, while the reduction of 2 with potassium—graphite led in high yield to [$\frac{1}{2}$ [$\frac{1}{2}$ A from the appropriate metal(II) chloride, while the reduction of 3 with potassium—graphite led in high yield to [$\frac{1}{2}$ [$\frac{1}{2}$ A from the appropriate metal(II) chloride, while the reduction of 3 with potassium—graphite led in high yield to [$\frac{1}{2}$ A from the appropriate metal(II) chloride, while the reduction of 3 with potassium—graphite led in high yield to [$\frac{1}{2}$ A from the appropriate metal(II) chloride, while the reduction of 3 with potassium—graphite led in high yield to [$\frac{1}{2}$ A from the appropriate metal(II) chloride, while the reduction of 3 with potassium—graphite led in high yield to [$\frac{1}{2}$ A from the appropriate metal(II) chloride, while the reduction of 3 with potassium—graphite led in high yield to [$\frac{1}{2}$ A from the appropriate metal(II) chloride, while the reduction of 3 with potassium—graphite led in high yield to [$\frac{1}{2}$ A from the appropriate metal(II) chloride, while the reduction of 3 with potassium—graphite led in high yield to [$\frac{1}{2}$ A from the appropriate metal(II) chloride, while the reduction of 3 with potassium of 3 with potassium of 3 with potassium of 3 with pot

We have reviewed initial progress on the synthesis, structures and reactions of alkali metal α,ω -bis(trimethylsilyl)-1-azaallyls and - β -diketiminates, including their role as precursors for preparing unusual transition metal and main group element complexes. Recently we described the new lithium 1-azaallyl [Li{N-(R)C(Ph)=CR_2}(thf)] A (R = SiMe_3), obtained by treatment of [Li(CR_3)(thf)_2]^2 with 1 equivalent of benzonitrile [(i) in Scheme 1], and its application in the context of low valent Group 14 metal chemistry. We also drew attention to the diversity of bonding modes in 1-azaallyl metal compounds in which the ligand functioned in an η^1 -enamido, η^3 -chelating or μ,η^2 mode.

Now we report the synthesis of the new unsymmetrical lithium 1,3-diazaallyl [Li{N(R)C(Ph)NC(Ph)=CR₂}] [\equiv Li(L-L')] 1 from [Li(CR₃)(thf)₂] and 2 equivalents of benzonitrile [(ii) in Scheme 1] and the use of 1 as a source of L-L' derivatives of K, Sn and Hg.

While symmetrical 1,3-diazaallyls, and in particular metal

Scheme 1 Preparation and some reactions of the 1,3-diazaallyl lithium compound 1 ($R = SiMe_3$).

benzamidinates based on the [N(R)C(Ph)N(R)]⁻ ligand, have been extensively studied and recently reviewed,⁶ their unsymmetrical analogues have received less attention.

Results and discussion

Whereas the reaction of $[\text{Li}(\text{CR}_3)(\text{thf})_2]$ with 1 equivalent of PhCN in Et₂O led to the hydrocarbon-soluble lithium 1-azaallyl **A** [(i) in Scheme 1], 3 the addition of 2 equivalents of PhCN gave the lithium 1,3-diazaallyl **1** [(ii) in Scheme 1]. It is assumed that in the latter reaction **A** is formed as an intermediate which then behaves as an *N*-centred nucleophile towards a second equivalent of PhCN. The 1,3-diazaallyl **1** was obtained from the reaction mixture as a yellow, air-sensitive powder by removing all volatiles, washing the residue with C_5H_{12} and drying it in vacuo.

Treatment of a halide of tin(II) or mercury(II) with [Li{N-(R)C(Ph)NC(Ph)=CR₂}] 1 in diethyl ether gave the complexes [SnCl(L-L')] 2, [sin(L-L')] 3 or [Hg(L-L')] 4 in high yield [(iii) or (iv) in Scheme 1]. The attempted potassium–graphite reduction of 2 led, not as expected, to a tin(I) species but to tin metal and [sin(L-L')] 5 [(v) in Scheme 1].

Compound 2, unlike 3–5, was very soluble in hydrocarbons; 3–5 were purified by recrystallisation from diethyl ether (3) or benzene (3–5). Compounds 2–4 showed the molecular ion peaks in high intensities in their EI mass spectra, which may indicate a considerable degree of covalency in these compounds. In the case of the more ionic alkali metal compounds 1 and 5, in contrast, only fragments of the ligand were observed.

Crystal structures of the metal 1,3-diazaallyls 3, 4 and 5

The molecular structures of crystalline compounds 3, 4 and 5 with the atom numbering schemes are illustrated in Figs. 1–3, respectively. Selected bond distances and angles are listed in Tables 1–3.

The crystalline compound $[Hg(L-L')_2]$ 4 is a monomer in which the metal atom is bonded in a linear fashion to the terminal nitrogen atoms of two different 1,3-diazaallyl ligands $[N(1)-Hg-N(3)\ 176.6(4)]$; the Hg-N bond distances to these nitrogen atoms, of 2.07(1) and 2.08(1) Å, are within the range for typical covalent Hg-N single bonds as observed in $[Hg_2N]Br$, $[Hg\{N(H)C(O)Me\}_2]^8$ or $[Hg\{NC(O)(CH_2)_2C(O)\}_2]$, while the contacts to the internal nitrogen atoms N(2) and N(4) are much longer, 2.70(1) and

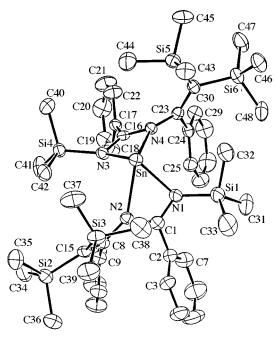


Fig. 1 Molecular structure of compound 3.

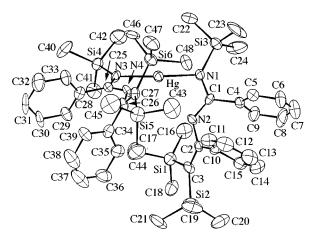


Fig. 2 Molecular structure of compound 4.

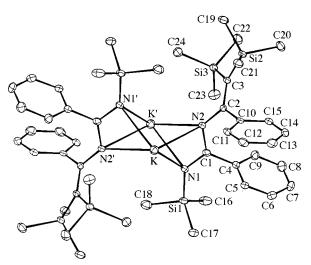


Fig. 3 Molecular structure of compound 5.

2.61(1) Å respectively, and thus represent at best only weak interactions. Similar bond lengths [Hg–N 2.069(6), 2.071(7) and 2.721(7), 2.717(7) Å, respectively] have been reported for the related benzamidinate [Hg{N(R)C(Ph)NR}₂].¹⁰ A corollary of the observed close contacts between only one nitrogen atom in each ligand and the mercury atom is the presence of two dis-

Table 1 Selected bond distances (Å) and angles (°) with estimated standard deviations in parentheses for compound 3

2.267(3)	Sn-N(3)	2.271(3)
2.391(3)	Sn-N(4)	2.393(3)
1.760(3)	Si(4)-N(3)	1.758(3)
1.336(5)	N(2)-C(1)	1.314(5)
1.428(5)	N(3)-C(16)	1.336(5)
1.319(5)	N(4)-C(23)	1.415(5)
1.494(6)	C(8)-C(15)	1.343(5)
1.360(5)	C(23)–C(24)	1.486(5)
107.75(12)	N(1)-Sn-N(2)	57.49(11)
86.37(11)	N(1)-Sn-N(4)	87.07(11)
57.65(11)	N(2)-Sn-N(4)	119.56(11)
125.4(3)	C(1)-N(1)-Sn	95.9(3)
129.2(2)	C(1)-N(2)-C(8)	123.3(3)
90.9(2)	C(8)-N(2)-Sn	145.0(3)
125.5(3)	C(16)-N(3)-Sn	95.6(2)
129.3(2)	C(16)-N(4)-C(23)	124.4(3)
90.6(2)	C(23)-N(4)-Sn	143.3(2)
115.6(4)	N(2)-C(1)-C(2)	122.7(4)
121.6(4)	N(4)-C(16)-N(3)	116.0(3)
122.7(3)	N(3)-C(16)-C(17)	121.3(3)
	2.391(3) 1.760(3) 1.336(5) 1.428(5) 1.319(5) 1.494(6) 1.360(5) 107.75(12) 86.37(11) 57.65(11) 125.4(3) 129.2(2) 90.9(2) 125.5(3) 129.3(2) 90.6(2) 115.6(4) 121.6(4)	2.391(3) Sn-N(4) 1.760(3) Si(4)-N(3) 1.336(5) N(2)-C(1) 1.428(5) N(3)-C(16) 1.319(5) N(4)-C(23) 1.494(6) C(8)-C(15) 1.360(5) C(23)-C(24) 107.75(12) N(1)-Sn-N(2) 86.37(11) N(1)-Sn-N(4) 57.65(11) N(2)-Sn-N(4) 125.4(3) C(1)-N(1)-Sn 129.2(2) C(1)-N(2)-C(8) 90.9(2) C(8)-N(2)-Sn 125.5(3) C(16)-N(3)-Sn 129.3(2) C(16)-N(4)-C(23) 90.6(2) C(23)-N(4)-Sn 115.6(4) N(2)-C(1)-C(2) 121.6(4) N(4)-C(16)-N(3)

Table 2 Selected bond distances (Å) and angles ($^{\circ}$) with estimated standard deviations in parentheses for compound 4

Hg-N(1) Hg-N(3) N(1)-C(1) N(2)-C(2) N(4)-C(25) C(1)-C(4) C(2)-C(10) C(26)-C(27)	2.065(10) 2.080(10) 1.313(14) 1.40(2) 1.29(2) 1.50(2) 1.50(2) 1.36(2)	Hg···N(2) Hg···N(4) N(2)–C(1) N(3)–C(25) N(4)–C(26) C(2)–C(3) C(25)–C(28)	2.698(11) 2.614(9) 1.320(14) 1.34(2) 1.415(14) 1.35(2) 1.49(2)
N(1)-Hg-N(3) N(1)-Hg-N(2) C(1)-N(1)-Hg C(1)-N(2)-C(2) C(25)-N(3)-Hg C(25)-N(4)-C(26) N(1)-C(1)-C(4) C(3)-C(2)-N(2) N(2)-C(2)-C(10) C(2)-C(3)-Si(1) N(4)-C(25)-N(3) N(3)-C(25)-C(28) C(27)-C(26)-C(34) C(26)-C(27)-Si(6)	176.6(4) 54.3(3) 108.5(8) 125.2(11) 104.2(8) 125.0(10) 118.1(12) 123.4(12) 114.0(11) 116.0(10) 117.7(11) 118.1(13) 124.8(11) 117.3(10)	N(3)-Hg-N(4) C(1)-N(1)-Si(3) Si(3)-N(1)-Hg C(25)-N(3)-Si(4) Si(4)-N(3)-Hg N(1)-C(1)-N(2) N(2)-C(1)-C(4) C(3)-C(2)-C(10) C(2)-C(3)-Si(2) Si(2)-C(3)-Si(1) N(4)-C(25)-C(28) C(27)-C(26)-N(4) N(4)-C(26)-C(34) C(26)-C(27)-Si(5)	56.1(4) 131.3(9) 120.1(6) 133.8(9) 122.0(6) 117.2(12) 124.3(12) 122.5(12) 123.8(10) 119.8(7) 124.2(13) 121.5(11) 113.5(11) 121.9(10)

tinctly different C-N bond distances in the backbone of the ligands, as illustrated in structure I [a homoleptic metal(II) η^{1} iminoamide]; these values are similar to those observed in H(R)NC(Ph)=NR,¹¹ 1.263(3) and 1.410(3) Å, appropriate for CN double or single bonds, respectively. While the bond distances C=N 1.28(1) and C-N 1.36(1) Å found in [Hg{N-(R)C(Ph)N(R)₂] are in good agreement with this view, indicating only a small degree of delocalisation in the backbone of the amidinate ligand, the corresponding values in 4 are rather closer to one another: 1.29(2), 1.34(2), 1.31(1) and 1.32(1) Å. These are, however, in the same range as in compounds where the π -electron density in the ligand is delocalised (structure II) with both nitrogen atoms of each ligand binding more or less equally to the metal as in $[Au\{N(R)C(Ph)NR\}Cl_2]^{12}$ $[Al\{N(R)C(Ph)NR\}Cl_2]^{13a}$ $[Al\{N(R)C(Ph)NR\}_2H]^{13b}$ $[Cr{N(R)C(Ph)NR}_2]$,¹⁴ $[Mg{N(R)C(Ph)NR}_2(NCPh)]$, 15 $[Sn{N(R)C(Ph)NC(Ph)=CR_2}_2]$ [Ge{N(Pri)C(Me)NPri}2].16 Another interesting feature of the two related mercury compounds is the very different arrangement of the ligands relative to one another, as evident from the torsion angles C-N(-Hg-)N-C across the linear HgN₂ fragment of -147.5° in $[Hg\{N(R)C(Ph)NR\}_{2}]$ and 55.4° in 4.

Table 3 Selected bond distances (Å) and angles (°) with estimated standard deviations in parentheses for compound 5

K-N(1')	2.796(3)	K-N(1)	2.804(3)
K-N(2')	2.857(3)	$K \cdots N(2)$	3.067(3)
$K \cdots C(1)$	3.176(4)	$K \cdots C(1')$	3.208(4)
$K \cdots K'$	3.343(2)	Si(1)-N(1)	1.717(3)
N(1)-C(1)	1.335(4)	N(2)-C(1)	1.336(4)
N(2)-C(2)	1.402(4)	C(1)-C(4)	1.500(5)
C(2)–C(3)	1.383(5)		
N(1')-K-N(1)	106.68(8)	N(1')-K-N(2')	47.85(9)
N(1)-K-N(2')	92.82(9)	N(1')-K-N(2)	88.62(9)
N(1)-K-N(2)	45.71(8)	N(2')-K-N(2)	111.39(7)
C(1)-N(1)-Si(1)	129.0(3)	$C(1)-N(1)-\dot{K}'$	95.3(2)
Si(1)-N(1)-K'	119.3(3)	C(1)-N(1)-K	93.4(2)
Si(1)-N(1)-K	130.1(2)	K'-N(1)-K	73.32(8)
C(1)-N(2)-C(2)	121.9(3)	C(1)-N(2)-K'	92.6(2)
C(2)-N(2)-K'	143.8(2)	C(1)-N(2)-K	82.3(2)
C(2)-N(2)-K	122.5(2)	K'-N(2)-K	68.61(7)
N(1)-C(1)-N(2)	118.3(3)	N(1)-C(1)-C(4)	120.4(3)
N(2)-C(1)-C(4)	121.3(3)	C(3)-C(2)-C(10)	119.8(3)
C(3)-C(2)-N(2)	122.7(3)	C(2)-C(3)-Si(3)	119.8(3)
N(2)– $C(2)$ – $C(10)$	117.3(3)	Si(3)-C(3)-Si(2)	119.0(2)
C(2)–C(3)–Si(2)	121.1(3)		

Symmetry transformations used to generate equivalent atoms: -x, -y, -z.

$$-N \longrightarrow N - -N \longrightarrow N - -$$

Crystalline $[\dot{S}n\{N(R)C(Ph)\dot{N}C(Ph)=CR_2\}_2]$ 3 shows, in contrast to 4, a severely distorted ψ-trigonal bipyramidal coordination at Sn with a stereochemically active lone electron pair occupying an equatorial site. The atoms N(2) and N(4) may be regarded as being approximately axial; however, the N(2)-Sn-N(4) bond angle of ca. 120° is well removed from 180°. The Sn-N distances are 2.267(3), 2.391(3), 2.271(3) and 2.393(3) Å, the equatorial bonds being the shorter. The two ligands are tilted against one another with an angle of 79.1° between the N(1)-C(1)-N(2) and N(3)-C(16)-N(4) planes. The Sn-N distances, average 2.269(3) Å, are much longer than in simple tin(II) amides such as Sn(NR₂)₂ [2.092(6) Å],¹⁷ but are in the same range as in compounds with related monoanionic chelating ligands as in [Sn(NC₅H₄CR₂-2)₂]¹⁸ or $[Sn\{N(R)C(Ph)CR_2\}\{N(R)C(Ph)=CR_2\}]$ (ref. 3, and literature cited therein). The C-N bond distances in 3 [1.336(5), 1.314(5), 1.336(5) and 1.319(5) Å] are essentially identical within the standard deviations, as appropriate for a type II structure, with each ligand co-ordinating in a chelating fashion to the metal. The structure of crystalline 3 is thus similar to that of [Ge{N(Pri)C(Me)NPri}2],16 having the amidinate bite angle of 61.0° compared with average $57.6(1)^{\circ}$ in 3.

The solvent-free, crystalline $[K(L-L')]_2$ **5** is a centrosymmetric dimer, the two potassium atoms being bridged by two ligands, each of which is thus of μ - η^2 : η^2 type, the overall structure being represented schematically in **III** rather than **IV** (μ - η^2). The four nitrogen atoms of the ligands are coplanar, this plane being the common base for the two distorted pyramids having an axial potassium atom. The rather short K-N(1) 2.804(3), K-N(1') 2.796(3) and K-N(2') 2.857(3) Å bonds are in the same range as in $[\{K(\mu-NR_2)\}_2]_1^{19a}$ $[K(NR_2)] \cdot C_6 H_5 Me,_{19b}^{19b}$ $[K(NC_5 H_4 NPh-2)(tmen)]_1^{20}$ $[K\{N(R)P(Ph)_2NR\}(thf)_4]_1^{21}$ $[K\{N(Bu^t)S(Ph)NR\}(thf)]_2^{22}$ and $[K\{N(R)C(R')NC(R')=CH(R)\}(NCR')]$ $(R = SiMe_3, R' = SiMe$

 $C_6H_3Me_2$ -2,5),²³ while the $K\cdots N(2)$ contact of 3.067(3) Å is only slightly longer. The C-N distances of 1.335(4) and 1.336(4) Å in the backbone of the ligand are identical. The overall geometry of 5 is similar to that of the above nitrile-co-ordinated potassium 1,3-diazaallyl $[K\{N(R)C(R')NC(R')=CH(R)\}(NCR')]$, which likewise belongs to type III. Both compounds show close $K\cdots K$ contacts of 3.343(2) (5) and 3.299(5) Å, which are shorter than in potassium metal, 4.54 Å.²⁴

The related coinage metal complexes $[\{M[\mu-\eta^2-N(R)C(Ph)-NR]\}_2]$ ($M=Cu^{25}$ or Ag^{26}), in contrast to these potassium compounds, while also dimeric in the solid state, show a linear co-ordination at the metal with only two short M–N contacts and equidistant C–N bond lengths. This bonding mode, IV, may be described as $\mu-\eta^2$ -bridging.

Experimental

General procedures

All manipulations were carried out under argon, using standard Schlenk techniques. Solvents were distilled from drying agents and degassed. The NMR spectra were recorded in C_6D_6 or CDCl₃ at 298 K using the following Bruker instruments: AC-P 250 (¹H, 250.1; ¹³C, 62.9), DPX 300 (¹H, 300.1; ¹³C, 75.5) and AMX 500 (¹H, 500.1; ¹³C, 125.7; ¹¹⁹Sn, 186.5 MHz) and referenced internally to residual solvent resonances (chemical shift data in δ) in the case of ¹H and ¹³C spectra. The ¹¹⁹Sn spectra were referenced externally to SnMe₄. Unless otherwise stated, all NMR spectra other than ¹H were proton-decoupled. Electron impact mass spectra were taken from solid samples using a Kratos MS 80 RF instrument. Melting points were taken in sealed capillaries and are uncorrected.

Preparations

[Li{N(R)C(Ph)NC(Ph)=CR₂}] 1. Benzonitrile (1.91 cm³, 19 mmol) was added to a solution of [Li(CR₃)(thf)₂] (3.58 g, 9.4 mmol) in diethyl ether (30 cm³) at room temperature. The reaction mixture was stirred for 18 h. Volatiles were removed *in vacuo*, the residue 'stripped' with pentane and then heated *in vacuo* for 2.5 h at 60 °C. The residue was washed with pentane (10 cm³) and dried *in vacuo* to give the yellow powder 1 (3.0 g, 72%), mp (decomp.) 224 °C. MS: m/z (%) 438 (20, [HL–L']⁺), 423 (4, [HL–L' – Me]⁺), 365 (12 [HL–L' – SiMe₃]⁺) and 335 (22, [HL–L' – PhCN]⁺). ¹H NMR (C₆D₆–C₅D₅N): δ 0.01, 0.05, 0.57 (s, SiMe₃), 6.87–6.73, 6.81–6.88, 6.98–7.01 (m, Ph, 10 H). ⁷Li NMR (C₆D₆–C₅D₅N): δ 3.0. ¹³C NMR (C₆D₆–C₅D₅N): δ 3.2, 3.6, 4.0 (s, SiMe₃), 108.0 (s, CSi₂), 126.9–132.4 (s, *o,m*-C of Ph), 146.1 (s, *ipso*-C), 175.3 and 177.5 (s, CN).

[SnCl{N(R)C(Ph)NC(Ph)=CR₂}] 2. Tin(II) chloride (0.23 g, 1.24 mmol) was added to a stirred solution of compound 1 (0.55 g, 1.24 mmol) in diethyl ether (25 cm³) at room temperature. The reaction mixture was stirred overnight and volatiles were then removed *in vacuo*. Extracting with pentane (40 cm³) gave colourless crystals of 2 (0.38 g, 52%). MS: m/z (%) 592 (12, M⁺), 557 (20, [M – Cl]⁺), 519 (18, [M – SiMe₃]⁺) and 437 (60, [L–L']⁺). ¹H NMR (C₆D₆): δ –0.15, –0.11, 0.53 (s, SiMe₃), 6.68–6.83 (m, Ph, 10 H). ¹¹⁹Sn NMR (C₆D₆): δ –35.1. ¹³C NMR (C₆D₆): δ 1.3, 2.9, 4.4 (s, SiMe₃), 126.4, 127.2, 127.7, 127.9, 128.1, 128.3, 129.1, 129.7 (s, o,m-C of Ph), 130.2 (s, CSi₂), 139.1, 145.4 (s, ipso-C), 162.6 (s, CN) and 179.3 (s, CN₂).

[\$\overline{\text{N(R)C(Ph)}}\overline{\text{NC(Ph)}}\overline{\text{C(Ph)}}\overline{\text

	3	4	5
Formula	$C_{48}H_{74}N_4Si_6Sn\cdot C_6H_6$	C ₄₈ H ₇₄ HgN ₄ Si ₆	$C_{48}H_{74}K_2N_4Si_6$
M	1072.5	1076.2	953.9
T/K	293(2)	293(2)	173(2)
Crystal system	Triclinic	Monoclinic	Monoclinic
Space group	P1 (no. 2)	$P2_{1}/n$ (non-st. no. 14)	$P2_{1}/n$ (no. 14)
a/Å	12.307(3)	12.995(6)	9.227(3)
b/Å	13.096(2)	35.21(2)	18.050(8)
c/Å	19.767(3)	13.391(3)	16.192(11)
a / $^{\circ}$	101.84(1)		
<i>β</i> /°	103.25(2)	114.69(2)	96.09(4)
γ/°	94.27(2)		
U/ų	3010(1)	5567(4)	2682(2)
Z	2	4	2
$D_{\rm c}/{ m g~cm^{-3}}$	1.18	1.28	1.18
F(000)	1132	2216	1024
μ mm ⁻¹	0.58	2.93	0.35
Crystal size/mm	$0.70 \times 0.60 \times 0.60$	$0.2 \times 0.2 \times 0.1$	$0.3 \times 0.3 \times 0.2$
$\theta_{\min}, \theta_{\max} / ^{\circ}$	2, 25	2, 25	2, 25
Index ranges	$0 \le h \le 14$,	$0 \le h \le 15$,	$0 \le h \le 10$,
-	$-15 \le k \le 15$,	$0 \le k \le 41$,	$0 \le k \le 21$,
	$-23 \le l \le 22$	$-15 \le l \le 14$	$-19 \le l \le 19$
Reflections collected	10 592	10 217	4991
Independent reflections	10 592	$9768 (R_{int} = 0.0841)$	$4691 (R_{\text{int}} = 0.0478)$
Reflections with $I > 2\sigma(I)$	7536	4409	3332
No. variables	597	532	271
$R1 [I > 2\sigma(I)]^a$	0.050	0.080	0.056
wR2 (all data) ^b	0.111	0.156	0.153
Largest difference peak/e Å ⁻³	0.37	0.72	0.39
Absorption correction from ψ scan	ns $T_{\text{max}} = 1.00, T_{\text{min}} = 0.90$	$T_{\text{max}} = 1.00, \ T_{\text{min}} = 0.58$	Not applied
Maximum shift/e.s.d.	0.001	0.001	0.002
$^{a}R1 = \Sigma F_{o} - F_{c} /\Sigma F_{o} . \ ^{b}wR2 = [\Sigma w(F_{o}^{2} - F_{c}^{2})^{2}/\Sigma F_{o}]$	$[\Sigma w F_o^4]^{\frac{1}{2}}$.		

mother-liquor (0.19 g, 22%) (Found: C, 59.2; H, 7.48; N, 5.63. $C_{48}H_{74}N_4Si_6Sn$ requires C, 58.0; H, 7.50; N, 5.63%), mp (decomp.) 230 °C. MS: m/z (%) 993 (0.2, [M – H]⁺), 979 (0.4, [M – Me]⁺), 921 (11, [M – SiMe₃]⁺) and 557 (28, [M – L–L']⁺). ¹H NMR (C_6D_6): δ 0.08 (s, SiMe₃), 0.71 (s, NSiMe₃) and 6.87 (s, broad, Ph, 10 H). ¹¹⁹Sn NMR (C_6D_6): δ –141.4. ¹³C NMR (CDCl₃): δ 3.6, 3.7 (s, SiMe₃), 4.8 (s, NSiMe₃), 124.4 (s, CSi₂), 126.8, 127.5, 127.6, 128.9, 130.8 (s, o,m-C of Ph), 139.9 and 147.0 (s, ipso-C), 176.0 (s, CN₂).

 $[Hg\{N(R)C(Ph)NC(Ph)=CR_2\}_2]$ 4. Mercury(II) bromide (0.19) g, 0.54 mmol) was added to a solution of compound 1 in diethyl ether (80 cm³) at room temperature. The originally pale yellow solution was immediately decolorised and the HgBr₂ dissolved in the reaction mixture. After stirring for 15 h at room temperature, filtration from a small amount of precipitate and cooling of the filtrate gave colourless crystals of 3 (0.27 g, 45%). A second crop was obtained from the mother-liquor after partial removal of the solvent (0.21 g, 36%) (Found: C, 53.2; H, 6.82; N, 5.47. C₄₈H₇₄HgN₄Si₆ requires C, 53.6; H, 6.93; N, 5.21%), mp (decomp.) 182 °C. MS: m/z (%) 1075 (37, [M – H]⁺), 1061 $(4, [M - Me]^+)$ and 1003 (21, $[M - SiMe_3]^+)$. ¹H NMR (C_6D_6 – C_5D_5N): $\delta -0.06$, -0.04, 0.60 (s, SiMe₃) and 6.86–7.15 (Ph, 10 H). 13 C NMR (CDCl₃): δ 2.7, 2.9, 3.2 (s, SiMe₃), 119.8 (s, CSi₂), 125.9–128.9 (s, Ph), 139.2 and 146.8 (s, ipso-C), 166.9 and 167.7 (s, CN).

[{K[N(R)C(Ph)NC(Ph)=CR₂]}₂] **5.** A solution of compound **2** (0.30 g, 0.51 mmol) in diethyl ether (20 cm³) was added to a suspension of freshly prepared potassium–graphite (0.8 mmol; 0.03 g K and 0.08 g C) in diethyl ether (10 cm³) at -78 °C. The reaction mixture was allowed to warm to room temperature and stirred overnight. The residue, after removal of volatiles *in vacuo*, was extracted with hot benzene and the extract stored at room temperature to give colourless crystals of **5** (0.22 g, 91%), mp (decomp.) 145–195 °C. MS: m/z (%) 438 (15, [HL–L']+) and 365 (12, [HL–L' – SiMe₃]+). ¹H NMR (C₆D₆):

 δ -0.03, 0.01, 0.48 (s, SiMe₃), 6.70 (d, Ph, 2 H), 6.87–6.97 (m, Ph, 8 H). ¹³C NMR (C₆D₆): δ 3.5, 3.6, 4.0 (s, SiMe₃), 111.5 (s, CSi₂), 126.2, 126.3, 127.3, 128.3, 129.0 (s, *o,m*-C of Ph), 145.8, 149.8 (s, *ipso*-C), 172.7 and 174.7 (s, CN).

Crystallography

Data were collected on an Enraf-Nonius CAD4 diffractometer using monochromatic Mo-K α radiation (λ 0.710 73 Å). For compounds 3 and 4 the crystals were sealed in a capillary under argon, whilst for 5 the crystal was enclosed in an oil drop and frozen in a stream of cold nitrogen gas. Cell dimensions were calculated from the setting angles for 25 reflections with $7 < \theta < 10^\circ$. Intensities were measured by an ω -2 θ scan. Corrections were made for Lorentz-polarisation effects and also for absorption by ψ scans. There was no crystal decay as measured by two standard reflections. Positions of non-hydrogen atoms were derived by direct methods using SHELXS 86²⁷ and refined on F^2 with anisotropic thermal parameters, by full-matrix, least squares using SHELXL 93.²⁸ Further details are in Table 4.

CCDC reference number 186/1085.

See http://www.rsc.org/suppdata/dt/1998/3113/ for crystallographic files in .cif format.

Acknowledgements

We are grateful to the EPSRC for the award of a fellowship to M. L. and for other support.

References

- 1 M. F. Lappert and D.-S. Liu, J. Organomet. Chem., 1995, 500, 203.
- 2 Z. H. Aiube and C. Eaborn, J. Organomet. Chem., 1984, 269, 217.
- 3 P. B. Hitchcock, M. F. Lappert and M. Layh, *Inorg. Chim. Acta*, 1998. 269, 181.
- 4 P. B. Hitchcock, J. Hu, M. F. Lappert, M. Layh and J. Severn, *Chem. Commun.*, 1997, 1189.

- 5 P. B. Hitchcock, J. Hu, M. F. Lappert, M. Layh, D.-S. Liu, J. R. Severn and S. Tian, An. Quim., Int. Ed. Engl., 1996, 92, 186; P. B. Hitchcock, M. F. Lappert and M. Layh, J. Chem. Soc., Dalton Trans., 1998, 1619.
- 6 F. T. Edelmann, Coord. Chem. Rev., 1994, 137, 403.
- 7 W. Rüdorff and K. Brodersen, Z. Anorg. Allg. Chem., 1953, 274, 323
- 8 B. Kamenar and D. Grdenić, Inorg. Chim. Acta, 1969, 3, 25.
- 9 D. Grdenić, B. Kamenar, M. Sikirica, T. Duplančić, S. Govedić, A. Hergold and P. Matković, *Acta Crystallogr.*, *Sect. A*, 1975, 31, S132.
- 10 A. Zinn, K. Dehnicke, D. Fenske and G. Baum, Z. Anorg. Allg. Chem., 1991, 596, 47.
- 11 C. Ergezinger, F. Weller and K. Dehnicke, Z. Naturforsch., Teil B, 1988, 43, 1119.
- 12 W. Hiller, J. Strähle, A. Zinn and K. Dehnicke, Z. Naturforsch., Teil B, 1989, 44, 999.
- 13 (a) C. Ergezinger, F. Weller and K. Dehnicke, Z. Naturforsch., Teil B, 1988, 43, 1621; (b) R. Duchateau, A. Meetsma and J. H. Teuben, Chem. Commun., 1996, 223.
- 14 J.-K. Buijink, M. Noltemeyer and F. T. Edelmann, Z. Naturforsch., Teil B, 1991, 46, 1328; D. Stalke, M. Wedler and F. T. Edelmann, J. Organomet. Chem., 1992, 431, C1.
- 15 M. Westerhausen and H.-D. Hausen, *Z. Anorg. Allg. Chem.*, 1992, **615**, 27.

- 16 H. H. Karsch, P. A. Schlüter and M. Reisky, Eur. J. Inorg. Chem., 1998, 433.
- 17 T. Fjeldberg, H. Hope, M. F. Lappert, P. P. Power and A. J. Thorne, J. Chem. Soc., Chem. Commun., 1983, 639.
- 18 B. S. Jolly, M. F. Lappert, L. M. Engelhardt, A. H. White and C. L. Raston, *J. Chem. Soc.*, *Dalton Trans.*, 1993, 2653.
- 19 (a) K. F. Tesh, T. P. Hanusa and J. C. Huffman, *Inorg. Chem.*, 1990, 29, 1584; (b) P. G. Williard, *Acta Crystallogr.*, Sect. C, 1988, 44, 270.
- 20 P. C. Andrews, D. R. Baker, R. É. Mulvey, W. Clegg and P. A. O'Neil, *Polyhedron*, 1991, **10**, 1839.
- 21 A. Steiner and D. Stalke, Inorg. Chem., 1993, 32, 1977.
- 22 F. Pauer and D. Stalke, J. Organomet. Chem., 1991, 418, 127.
- 23 P. B. Hitchcock, M. F. Lappert and D.-S. Liu, *J. Organomet. Chem.*, 1995, 488, 241.
- 24 C. S. Barrett, Acta Crystallogr., 1956, 9, 671.
- 25 S. Maier, W. Hiller, J. Strähle, C. Ergezinger and K. Dehnicke, Z. Naturforsch., Teil B, 1988, 43, 1628.
- 26 D. Fenske, G. Baum, A. Zinn and K. Dehnicke, Z. Naturforsch., Teil B, 1991, 45, 1273.
- 27 G. M. Sheldrick, SHELXS 86, Program for the Solution of Crystal Structures, University of Göttingen, 1986.
- 28 G. M. Sheldrick, SHELXL 93, Program for Crystal Structure Refinement, University of Göttingen, 1993.

Paper 8/04134B